ÖĞRETMENLER İÇİN

» Karne Görüşleri

» Konuşma Metinleri

» Ders Kesim Raporları

» Proje Konuları

» Performans Görevi Konuları

» Dilbilgisi Konuları

» Matematiği Sevdirmenin Yolları

» Okuma Alışkanlığı Kazandırma

» Eğitici Oyunlar

REHBERLİK ETKİNLİKLERİ

» 1.Sınıf Rehberlik Etkinlikleri

» 2.Sınıf Rehberlik Etkinlikleri

» 3.Sınıf Rehberlik Etkinlikleri

» 4.Sınıf Rehberlik Etkinlikleri

» 5.Sınıf Rehberlik Etkinlikleri

» 6.Sınıf Rehberlik Etkinlikleri

» 7.Sınıf Rehberlik Etkinlikleri

» 8.Sınıf Rehberlik Etkinlikleri

BİLİM VE TEKNOLOJİ

» Türk Bilim İnsanları

» Bilim İnsanları ve Çalışmaları

» Bilim İnsanları ve Buluşları

» İcatlar ve Buluşlar Tarihi

» Buluşlar ve Hikayeleri

» Önemli İcatlar

» İcatlar ve Mucitleri

» Türk Mucitler ve İcatları

» Türklerin Yaptığı İcatlar

» 20.Yüzyılın İcatları

» Yüzyılın Buluşları

TÜRKÇE

» Türk Dilleri Ailesi

» Türkçenin Tarihi Gelişimi

» Şiir Bilgisi

» 100 Temel Eser Listesi

» Anlatım Biçimleri

» Kitap Özetleri

» Noktalama İşaretleri

» Yazım Kuralları

» Kompozisyonun Tanımı-Çeşitleri

» Kompozisyon Nasıl Yazılır

» Kompozisyon Konuları

» Kompozisyon Örnekleri

EDEBİYAT

» Edebiyat

» Pratik Edebiyat Bilgileri

» Türk Edebiyatının Dönemleri

» Türk Edebiyatında Roman

» Türk Romanı Kronolojisi

» Türk Edebiyatı Roman Özetleri

» Dünya Edebiyatı Roman Özetleri

DENEYLER

» Vücudumuzla İlgili Deneyler

» Bitkilerle İlgili Deneyler

» Biyoloji Deneyleri

» Diğer Deneyler

MÜZİK

» Müzik Nedir

» Müziğin Tarihçesi

» Genel Müzik Bilgisi

» Müzik Terimleri Sözlüğü

» Türk Müziği Çalgıları

» Türk Halk Müziği

» Türk Sanat Müziği

» Yurdumuzun Ünlü Müzisyenleri

EĞİTİCİ BİLGİ

Forum

=> Daha kayıt olmadın mı?



Forum - Bölünebilme Kuralları

Burdasın:
Forum => MATEMATİK => Bölünebilme Kuralları

<-Geri

 1 

Devam->


admin
(şimdiye kadar 261 posta)
08.01.2012 19:30 (UTC)[alıntı yap]


BÖLÜNEBİLME KURALLARI


2 ile Bölünebilme:
Bir sayının 2 ile tam olarak bölünebilmesi için, birler basamağının
0, 2, 4, 6, 8
sayılarından biri olması gerekir. Yani, her çift sayı 2 ile tam olarak bölünür. Bununla birlikte, tüm tek sayılar 2 ile bölündüğünde, kalan 1 olur.
3 ile Bölünebilme:
Bir sayının 3 ile tam olarak bölünebilmesi için, sayının rakamları toplamının 3 veya 3 ün katları olması gerekir. Bir sayının 3 e bölümünden kalan, rakamları toplamının 3 e bölümünden kalana eşittir.
4 ile Bölünebilme:
Bir sayının 4 ile tam olarak bölünebilmesi için, sayının son iki basamağının
00 veya 4 ün katları
olması gerekir. Bir sayının 4 ile bölümündeki kalan, sayının son iki basamağının 4 e bölümündeki kalana eşittir. Diğer taraftan, 4 ile tam olarak bölünebilen yıllar, artık yıl olarak isimlendirilir. Yani, artık yılların Şubat ayı 29 gün çeker. Dolayısıyla, 4 ile Bölünebilme, artık yılların bulunması kullanılabilir.
5 ile Bölünebilme:
Bir sayının 5 ile tam olarak bölünebilmesi için, sayının birler basamağının
0 veya 5
olması gerekir. Bir sayının 5 ile bölümündeki kalan, sayının birler basamağının 5 e bölümündeki kalana eşittir.
6 ile Bölünebilme:
Bir sayının 6 ile tam olarak bölünebilmesi için, bu sayının hem 3 ile hem de 2 ile tam olarak bölünmesi gerekir. Yani, 6 ile bölünebilen bir sayının hem çift sayı olması hem de rakamları toplamının 3 veya 3 ün katları olması gerekir.
7 ile Bölünebilme:
Bir sayının 7 ile tam olarak bölündüğünü tespit etmek için, sayının rakamlarının altına birler basamağından başlayarak (sağdan sola doğru)
a b c d e f
2 3 1 2 3 1
- +
sırasıyla ( 1 3 2 1 3 2 ...) yazılmalı ve şu hesap yapılmalıdır:
( 1.f + 3.e +2.d ) - ( 1.c + 3.b + 2.a ) = 7.k + m ( k, m: tamsayı
Sonuç, 7 veya 7 nin katları ( m = 0 ) olursa, bu sayı 7 ile tam olarak bölünür. Şayet, m sıfırdan farklı bir tamsayı olursa, bu sayının 7 ile bölümünden kalan m olur. İşaretler de sağdan başlayarak sırasıyla her üçlü için
+, -, +, -, +, -, +, ...
şeklinde olmalıdır. Bu kurala, (132) kuralı adı verilmektedir.
8 ile Bölünebilme:
Bir sayının 8 ile bölünebilmesi için, sayının son üç basamağının
000 veya 8 in katı
olması gerekir. Bir sayının 8 ile bölümündeki kalan, sayının son üç basamağındaki sayının 8 e bölümündeki kalana eşittir.
9 ile Bölünebilme:
Bir sayının 9 ile tam olarak bölünebilmesi için, sayının rakamlarının toplamının 9 veya 9 un katları olması gerekir. Bir sayının 9 a bölümündeki kalan, sayının rakamlarının toplamının 9 a bölümündeki kalana eşittir.
10 ile Bölünebilme:
Bir sayının 10 ile tam olarak bölünebilmesi için, sayının birler basamağının sıfır olması gerekir. Bir sayının 10 a bölünmesiyle elde edilen kalan, sayının birler basamağındaki rakama eşittir.
11 ile Bölünebilme:
Bir sayının 11 ile tam olarak bölünebilmesi için, sayının rakamlarının altına birler basamağından başlayarak sırasıyla
+, -, +, -, ...
işaretleri yazılır, artılı gruplar kendi arasında ve eksili gruplar kendi arasında toplanır, genel toplamın da
0, 11 veya 11 in katları
olması gerekir. Bir sayının 11 ile bölümündeki kalan, artılı ve eksili gruplarının toplamının 11 e bölümündeki kalana eşittir.
12 ile Bölünebilme:
Bir sayının 12 ile bölünebilmesi için, bu sayının hem 3 ile hem de 4 ile tam olarak bölünmesi gerekir.
15 ile Bölünebilme:
Bir sayının 15 ile bölünebilmesi için, bu sayının hem 3 ile hem de 5 ile tam olarak bölünmesi gerekir.
18 ile Bölünebilme:
Bir sayının 18 ile bölünebilmesi için, bu sayının hem 2 ile hem de 9 ile tam olarak bölünmesi gerekir.
24 ile Bölünebilme:
Bir sayının 24 ile bölünebilmesi için, bu sayının hem 3 ile hem de 8 ile tam olarak bölünmesi gerekir.
25 ile Bölünebilme:
Bir sayının 25 ile tam olarak bölünebilmesi için, sayının son iki basamağının
00, 25, 50, 75
olması gerekir.
Herhangi bir sayı ile Bölünebilme:
a ve b aralarında asal sayı ve
x = a . b
olsun. Şayet, bir sayı hem a ya hem de b ye bölünüyorsa, bu sayı x e de tam olarak bölünür.
ÖRNEKLER
Örnek 1:
Rakamları farklı 5 basamaklı 9452X sayısının 2 ile bölünebilmesi için, X değerlerinin toplamı kaç olmalıdır?
Çözüm:
9452X sayısının 2 ile bölünebilmesi için, X in alabileceği değerler
0, 2, 4, 6, 8
olmalıdır. Oysa, bu sayının rakamlarının farklı olması istendiğinden, X rakamı 2 ile 4 olamaz. Dolayısıyla, X in alabileceği değerler
0, 6, 8
dir. Bu değerlerin toplamı
0 + 6 + 8 = 14
olur.
Örnek 2:
5 basamaklı 1582A sayısının 3 ile bölünebilmesini sağlayan A değerlerinin toplamı kaçtır?
Çözüm:
Bir sayının 3 ile bölünebilmesi için, sayının rakamları toplamının 3 ün katları olması gerektiğinden,
1 + 5 + 8 + 2 + A = 3 . k
olmalıdır. Buradan,
16 + A = 3 . k
olur. Böylece, A
2, 5, 8
değerlerini alması gerekir. Dolayısıyla, bu değerlerin toplamı
2 + 5 + 8 = 15
olarak bulunur.
Örnek 3:
İki basamaklı mn sayısı 3 ile tam olarak bölünebilmektedir. Dört basamaklı 32mn sayısının 3 ile bölümünden kalan kaçtır?
Çözüm:
mn sayısı 3 ile tam olarak bölünebildiğine göre,
m + n = 3 . k
olması gerekir. O halde, 32mn sayısının 3 bölümünden kalan şöyle bulunur:
3 + 2 + m + n = 5 + ( m + n )
= 5 + 3 . k
= 3 + 2 + 3 . k
= 2 + 3 . k
Dolayısıyla, Kalan = 2 dir.
Örnek 4:
Dört basamaklı 152X sayısının 4 e bölümünden kalan 2 olduğuna göre, X in alabileceği değerler toplamı kaçtır?
Çözüm:
152X sayısının 4 e tam olarak bölünebilmesi için, sayının son iki basamağının yani 2X in, 4 ün katları olması gerekir. O halde, X,
0, 4, 8 ... (1)
değerlerini alırsa, 152X sayısı 4 e tam olarak bölünür. Kalanın 2 olması için, (1) nolu değerlere 2 ilave edilmelidir. Bu taktirde, X,
2, 6
değerlerini almalıdır. Dolayısıyla, bu değerlerin toplamı
2 + 6 = 8
olur.
Örnek 5:
666 + 5373
toplamının 4 e bölümünden kalan kaçtır?
Çözüm:
666 nın 4 e bölümünden kalan şöyle bulunur:
66 nın 4 e bölümünden kalana eşit olup, kalan 2 dir.
5373 ün 4 e bölümünden kalan şöyle bulunur:
73 ün 4 e bölümünden kalana eşit olup, kalan 1 dir.
Bu kalanlar toplanarak, toplamın kalanı
2 + 1 = 3
bulunur.
Örnek 6:
99999 . 23586 . 793423 . 458
çarpımının 5 e bölümünden kalan kaçtır?
Çözüm:
Bir sayının 5 e bölümünden kalanı bulmak için, birler basamağına bakılması gerekir ve birler basamağındaki rakamın 5 e bölümündeki kalana eşittir. Dolayısıyla,
99999 sayısının 5 e bölümünden kalan 2 dir.
23586 sayısının 5 e bölümünden kalan 1 dir.
793423 sayısının 5 e bölümünden kalan 3 tür.
458 sayısının 5 e bölümünden kalan 3 tür.
Bu kalanların çarpımı,
2 . 1 . 3 . 3 = 18
olur. 18 in 5 e bölümünden kalan ise, 3 tür.
Örnek 7:
Rakamları birbirinden farklı dört basamaklı 3m4n sayısı, 6 ile tam olarak bölündüğüne göre, m + n in en büyük değeri kaçtır?
Çözüm:
Bir sayının 6 ile tam olarak bölünebilmesi için, sayının hem 2 ile hem de 3 ile tam olarak bölünmesi gerekir.
3m4n sayısının 2 ye tam olarak bölünebilmesi için, n nin
0, 2, 4, 6, 8
olması gerekir. m + n nin en büyük olması için, n = 8 olmalıdır. Böylece, 3m4n sayısı,
3m48
olur. 3m48 sayısının, aynı zamanda, 3 e bölünmesi gerektiğinden,
3 + m + 4 + 8 = m + 3
olur ve böylece m, şu değerleri alabilir:
0, 3, 6, 9
m + n nin en büyük olması için, m = 9 alınmalıdır. Dolayısıyla, m = 9 ve n = 8 için, m + n nin en büyük değeri,
m + n = 9 + 8 = 17
olur.
Örnek 8:
Beş basamaklı m362m sayısı, 7 ile tam bölündüğüne göre, m nin alabileceği değerlerin toplamı kaçtır?
Çözüm:
(132) kuralını kullanmalıyız.
m 3 6 2 m = ( m.1 + 2.3 + 6.2 ) - ( 3.1 + m.3 ) = m + 6 + 12 - 3 - 3m = - 2m + 15
3 1 2 3 1
- +
- 2m + 15 = 7.k
Buradan m = 4 olur.
Örnek 9:
458028 sayısının 8 e bölümünden kalan kaçtır?
Çözüm:
Bir sayının 8 ile bölümünden kalanı bulmak için, sayının son üç basamağının 8 ile bölümünden kalanına bakılmalıdır. Dolayısıyla, 28 sayısının 8 ile bölümündeki kalanı bulmalıyız.
28 in 8 ile bölümünden kalan 4 tür.
O halde, 458028 sayısının 8 e bölümünden kalan, 4 tür.
Örnek 10:
10 basamaklı 4444444444 sayısının 9 ile bölümünden kalan kaçtır?
Çözüm:
Sayının rakamlarının toplamını alıp, 9 un katlarını atmalıyız.
Rakamların toplamı: 4 . 10 = 40 dır. Buradan, 4 + 0 = 4 bulunur.
O halde, 4444444444 sayısının 9 a bölümündün kalan 4 tür.
Örnek 11:
Dört basamaklı 268m sayısının 10 ile bölümünden kalan 3 olduğuna göre, m kaç olmalıdır?
Çözüm:
Bir sayının 10 a bölümünden kalanı bulmak için, birler basamağına bakılmalıdır. Sayınnı birler basamağındaki rakam kaç ise, kalan odur.
Bu nedenle, 268m sayısının 10 ile bölümünden kalan 3 olduğuna göre, m = 3 olmalıdır.
Örnek 12:
Dokuz basamaklı 901288563 sayısının 11 ile bölümünden kalan kaçtır?
Çözüm:
9 0 1 2 8 8 5 6 3
+ - + - + - + - +
Kalan = ( 9 + 1 + 8 + 5 + 3 ) - ( 0 + 2 + 8 + 6 )
= 26 - 16
= 10
olarak bulunur.
Örnek 13:
Beş basamaklı 5m23n sayısının 30 ile tam olarak bölünebilmesi için, m ve n nin hangi değerleri alması gerekir?
Çözüm:
Bir sayının 30 ile tam olarak bölünebilmesi için, hem 10 ile hem de 3 ile tam olarak bölünmelidir.
Bir sayının 10 ile tam olarak bölünebilmesi için, sayının birler basamağının 0 olması gerekir. Dolayısıyla, n = 0 olmalıdır. Böylece, verilen sayı
5m230
olur.
Bir sayının 3 ile tam olarak bölünebilmesi, sayının rakamları toplamının 3 ün katları olması gerekir. Dolayısıyla,
5 + m + 2 + 3 + 0 = 3.k
m + 10 = 3.k
m = 2, 5, 8
olur. O halde, m = 2, 5, 8 ve n = 0 olmalıdır



Bütün konular: 316
Bütün postalar: 464
Bütün kullanıcılar: 3003
Şu anda Online olan (kayıtlı) kullanıcılar: Hiçkimse crying smiley
 

ZİYARETÇİ SAYACI

Çevrimiçi: ziyaretçi

Bugün: 111 ziyaretçi

Toplam: 2429261 ziyaretçi

IP Adresiniz: 13.59.62.63

ZİYARETÇİ DEFTERİ

KRONOLOJİK TARİH

» Dünya Tarihi Kronolojisi

» Türk Tarihi Kronolojisi

» Selçuklu Tarihi Kronolojisi

» Osmanlı Tarihi Kronolojisi

» İnkılap Tarihi Kronolojisi

» Bilim Tarihi Kronolojisi

» İslam Tarihi Kronolojisi

» Kurtuluş Savaşı Kronolojisi

» Avrupa Birliği Kronolojisi

» Sanat Tarihi Kronolojisi

İLKLER TARİHİ

» Türkiye'de İlkler

» İlk Buluşlar

» Dünyada İlkler Tarihi

» İlk Müslüman Türk Devletleri

» İlk Türk Devletleri

» Türk Edebiyatında İlkler

» Dünya Edebiyatında İlkler

» Türk Sinemasında İlkler

» Türk Sporunda İlkler

» Türk Tarihinde İlkler

ÜLKELER

» Ülkeler Hakkında Bilgiler

» Ülkeler Neleri İle Ünlü

» Az Bilinen Ülkeler

» Ülkeler ve Başkentleri

» Ülkelerin Para Birimleri

» Ülkelerin Tatil Günleri

» Ülkelerin İlginç Yasakları

» Ülkelerin Evlilik Gelenekleri

TARİH

» Haçlı Seferleri

» Osmanlı Eserleri

» Selçuklu Eserleri

» İnönü Savaşları

» Birinci Dünya Savaşı

» İkinci Dünya Savaşı

» İstanbul'un Fethi

SPOR

» Futbol

» Basketbol

» Voleybol

» Tenis

» Masa Tenisi

» Atletizm

» Cirit

» Olimpiyat Oyunları

RESİM

» Resim Nedir

» Resim Teknikleri

» Ünlü Türk Ressamları

» Çağdaş Sanat Akımları

» Renklerin Dili

2010 - 2014 Eğitici Bilgi

| Ana Sayfa | İletişim | Banner Kodları | Ziyaretçi Defteri |

Ödev
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol